Structural Evolution of Chemically-Driven RuO2 Nanowires and 3-Dimensional Design for Photo-Catalytic Applications.

نویسندگان

  • Joonmo Park
  • Jae Won Lee
  • Byeong Uk Ye
  • Sung Hee Chun
  • Sang Hoon Joo
  • Hyunwoong Park
  • Heon Lee
  • Hu Young Jeong
  • Myung Hwa Kim
  • Jeong Min Baik
چکیده

Growth mechanism of chemically-driven RuO2 nanowires is explored and used to fabricate three-dimensional RuO2 branched Au-TiO2 nanowire electrodes for the photostable solar water oxidation. For the real time structural evolution during the nanowire growth, the amorphous RuO2 precursors (Ru(OH)3 · H2O) are heated at 180 (°)C, producing the RuO2 nanoparticles with the tetragonal crystallographic structure and Ru enriched amorphous phases, observed through the in-situ synchrotron x-ray diffraction and the high-resolution transmission electron microscope images. Growth then proceeds by Ru diffusion to the nanoparticles, followed by the diffusion to the growing surface of the nanowire in oxygen ambient, supported by the nucleation theory. The RuO2 branched Au-TiO2 nanowire arrays shows a remarkable enhancement in the photocurrent density by approximately 60% and 200%, in the UV-visible and Visible region, respectively, compared with pristine TiO2 nanowires. Furthermore, there is no significant decrease in the device's photoconductance with UV-visible illumination during 1 day, making it possible to produce oxygen gas without the loss of the photoactvity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corrigendum: Structural Evolution of Chemically-Driven RuO2 Nanowires and 3-Dimensional Design for Photo-Catalytic Applications

In addition, the original version of the Article did not indicate that Myung Hwa Kim and Jeong Min Baik jointly supervised the work. These errors have been corrected in both the PDF and HTML versions of the paper. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative C...

متن کامل

Experimentally designed optimized conditions for catalytic performance of nanostructured RuO2 in Biginelli reaction

Nanostructured RuO2 powders were synthesized via a hydrothermal method at 180 °C for 12 h using 1 and 2 M NaOH aqueous solutions. The structure of the obtained nanomaterials was investigated by powder X-ray diffraction (PXRD) technique. The morphology the obtained materials were studied by field emission scanning electron microscope (FESEM). The technique showed that with changing the reaction ...

متن کامل

Atomic Scale Analysis of the Enhanced Electro- and Photo-Catalytic Activity in High-Index Faceted Porous NiO Nanowires

Catalysts play a significant role in clean renewable hydrogen fuel generation through water splitting reaction as the surface of most semiconductors proper for water splitting has poor performance for hydrogen gas evolution. The catalytic performance strongly depends on the atomic arrangement at the surface, which necessitates the correlation of the surface structure to the catalytic activity i...

متن کامل

Synthesis, structural characterization and catalytic activity of TiO2/Al2O3 photo-composite

In recent years, the effects of heterogeneous catalysts for the oxidation of organic and inorganic pollutants in industrial wastewaters are spread. Traditionally, these reactions are usually carried out using suspensions of photo-catalysts such as TiO2. A chemical method including TiCl4, Al(NO3)3, ethanol amine, ethyl acetoacetate and aqueous ammonia were used for the fabrication of TiO2-Al2O3 ...

متن کامل

Characterization and Photo-catalytic Efficiency of MnFe2O4/Zn2SiO4 for Aniline Degradation Using Box-Behnken Experimental Design and Simulated Solar Radiation

In this research, Zn2SiO4 as a support and MnFe2O4 as a main photo-catalyst were individually syn-thesized and MnFe2O4 was fixed on Zn2SiO4 with solid state dispersion method. MnFe2O4 nano pho-to-catalyst was synthesized by co-precipitation method and reflux condition for 12 hours at 85°C in the presence of urea. For identification of catalysts Fourier-transform infrared (FTIR) sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Scientific reports

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015